
Creating a Consistent Image-Based Backup On Linux Using I/O

Tracing and Short-Term Filesystem Freezing

Nick Garvey
ngarvey@dattobackup.com

December 17, 2013

1 Problem

When performing an image-based backup, it isn’t always possible to ensure that the data on disk
is in a consistent state. While a system is running, information is changing on disk, which makes
getting a consistent point-in-time backup challenging. There are two current solutions to this.

The first solution is taking a copy-on-write snapshot of the device being backed up. This
allows the snapshot to be the target of the backup , which is guaranteed to be point-in-time by
the snapshot software. However, taking a snapshot requires hardware support or software support
through LVM. Snapshots can currently only be taken on a Linux system which was setup to do so
during installation; snapshots can’t be taken with a typical configuration.

An alternative solution is freezing the device for the duration of the backup process. There is
no risk of data changing during the backup if the device is frozen. Freezing the entire device during
a backup has an obvious problem: data that is changing needs to be stored somewhere. This is
often known as redirect-on-write. Sending it over the network or to another disk would solve this,
but support for this isn’t standard and again must be configured before installation.

2 Technique

2.1 Overview

The core idea of the new method is to keep track of which blocks are out-of-sync with the backup
destination and make passes over the device to synchronize those blocks. An interval set is the
perfect data structure for this. If blocks 7-10 are out-of-sync, then we will store the endpoints
[7, 10] instead of individually tracking {7, 8, 9, 10}.

When performing the original full backup, we need to determine what blocks are in-use on disk.
By parsing the filesystem metadata structures, it is possible to determine what parts of the disk
are in-use and initialize the out-of-sync interval set with the intervals corresponding to the in-use
blocks.

When performing the actual backup, the live system will likely perform modifications of the
disk. In order to keep track of these modifications, block tracking is used to determine which blocks
are modified. These modifications are added to the out-of-sync interval set during the backup, so
synchronization logic will pick up on the changes.

The method also makes incremental backups very straightforward. By tracking the changes
that occur after a backup, it is possible to know exactly what needs to be synchronized during an
incremental.

In order to make sure that no writes occur at the end of the backup process, the device can
be frozen for about a second. This will ensure that any cached data is written to the disk and

1



is detected by the block tracking software. The freeze process also ensures the data will be in a
consistent state on disk. This allows for use of the image without needing to correct any data that
was half-written when the backup completed.

2.2 Block Change Tracking

As disk I/O tracking is built into the kernel of modern versions of Linux (2.6.17+), it is possible
to track block changes without special hardware or pre-installation configuration.

In Linux, this disk I/O tracking facility is called blktrace. Whenever any type of I/O is sent to
a device, the I/O is recorded and is available to userspace applications.

2.3 I/O Throttling

The iterative copy process will never complete if the amount of out-of-sync data increases each
iteration. As such, the rate at which the data is copied must, on average, be greater than the rate
at which data is changing. In general this will be the case. Typical systems tend to write in bursts
and then stop, giving the backup process a chance to catch up.

However, in the non-typical case we need to guarantee that writes will slow down in a reasonable
time frame.

This can be enforced by making sure the copy I/O is faster than the change I/O. If the copy
speed can’t be increased, then the write speed must be reduced. This can be accomplished by
software or hardware throttling during the backup. In Linux, this can be accomplished using
cgroups blkio throttling.

While this need for throttling might seem like a limitation of the method, it is an inherent
problem with any sort of backup procedure. Inability to copy data faster than it is changing makes
a point-in-time image impossible, regardless of method.

2.4 Short-Term Device Freezing

By using the FIFREEZE ioctl in Linux, the filesystem on a device can have all writes frozen until
the FITHAW ioctl is given. Freezing the filesystem does three things: it suspends all writes, sends
any data in the write cache to disk, and marks the filesystem as clean. This is perfect for our
purposes, as this means the filesystem has a reduced chance of being corrupted. Additionally,
as the iterative backup process completes, freezing the filesystem removes any concern of a race
condition that might cause a write to be missed at the end of the procedure.

Freezing only at the end of the backup has minimal impact on the running system. The only
noticeable effect will be all disk I/O blocking for about a second.

3 Procedure

1. Start tracing to add disk writes to the out-of-sync structure

2. Read the filesystem metadata to determine which blocks are in-use

3. Add the in-use blocks to the out-of-sync data structure

4. Begin copying blocks that are marked in the out-of-sync structure

5. Check the number of out-of-sync blocks after a period, if it is increasing between iterations
then throttle the device

2



6. Repeat the above two steps until a small number of blocks are out-of-sync

7. Freeze the device

8. Copy the last changed blocks

9. Unfreeze the device

10. Unthrottle the device if it is throttled

3


